Sylodyn_® **NE** Scheda dei dati tecnici

Materiale elastomero PUR a celle chiuse

(poliuretano)

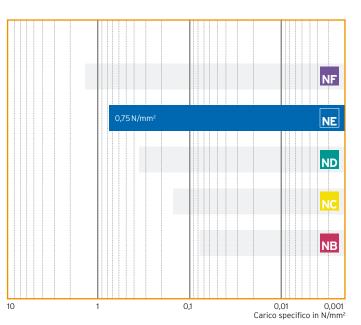
Colore blu

Dimensioni standard

Spessore: 12,5 mm / 25 mm

Rotolo: 1,5 m larghezza, 5,0 m lunghezza

Bande: fino a 1,5 m larghezza,


fino a 5,0 m lunghezza

Altre misure, pezzi stampati e pezzi profilati disponibili su richiesta.

Campo di impiego	Carico di compressione	Deformazione
	dipende dal fattore forma, i valori riportati sono validi per il fattore forma q=3	
Campo di impiego statico (carichi statici)	fino a 0,75 N/mm²	circa 11 %
Campo di impiego dinamico (carichi statici e dinamici)	fino a 1,20 N/mm²	circa 17 %
Picchi di carico (carichi occasionali per brevi periodi di tempo)	fino a 6,0 N/mm²	circa 40%

Serie Sylodyn®

Campo di impiego statico

Caratteristiche del materiale		Procedimento di prova	Annotazione
Fattore di perdita meccanico	0,08	DIN 535131	in base a temperatura, frequenza, carico specifico e ampiezza
Rimbalzo elastico	70%	EN ISO 83071	
Durezza ³	0,71 N/mm ²	EN ISO 8441	con il 10 % di schiacciamento, 3° ciclo di carico
Deformazione residua dopo compressione ²	<5%	EN ISO 1856 ¹	50 % deformazione, 23 °C, 72 ore, 30 min dopo la rimozione del carico
Modulo statico di elasticità³	6,69 N/mm ²		con un carico specifico di 0,15 N/mm²
Modulo dinamico di elasticità ³	7,54 N/mm ²	DIN 535131	con un carico specifico di 0,15 N/mm², 10 Hz
Modulo di scorrimento statico	0,69 N/mm ²	DIN ISO 18271	con una precompressione di 0,15 N/mm²
Modulo di scorrimento dinamico	1,02 N/mm ²	DIN ISO 18271	con una precompressione di 0,15 N/mm², 10 Hz
Tensione minima a rottura	3,90 N/mm ²	EN ISO 527-3/5/5001	
Allungamento minimo a rottura	300%	EN ISO 527-3/5/5001	
Abrasione ²	\leq 300 mm 3	DIN ISO 46491	carico 10 N
Coefficiente di attrito (acciaio)	0,7	EN ISO 82951	a secco, attrito statico
Coefficiente di attrito (calcestruzzo)	0,7	EN ISO 82951	a secco, attrito statico
Coefficiente di attrito (legno)	0,5	EN ISO 82951	a secco, attrito statico
Resistività di volume specifica	>10¹0 Ω · cm	DIN EN 62631-3-11	a secco
Conduttività termica	0,13 W/(mK)	DIN EN 12667	
Temperatura di utilizzo	da -30°C a 70°C		sono ammesse temperature superiori di breve durata
Reazione al fuoco	classe E	EN ISO 11925-2	infiammabilità normale, EN 13501-1

¹ Misurazione/analisi in base alla norma corrispondente

Tutte le informazioni e i dati sono basati sul nostro know-how attuale. Essi possono essere utilizzati come valori di calcolo indicativi, tenendo conto delle tolleranze tipiche di produzione e dello specifico impiego, e non rappresentano alcuna caratteristica garantita. Le proprietà dei prodotti e le rispettive tolleranze variano in base al tipo di applicazione e impiego e possono essere richieste a Getzner. Con riserva di modifiche.

Per maggiori informazioni vedere la norma VDI 2062 e il glossario. Ulteriori valori indicativi sono disponibili su richiesta.

² La misurazione è effettuata in dipendenza dalla densità con parametri di prova variabili

³ I valori sono validi per il fattore forma q = 3

Sylodyn_® **NE**

Curva di inflessione

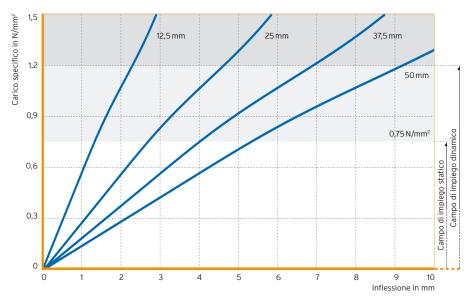


Fig. 1: Curva di inflessione quasi-statica per diversi spessori

Curva di inflessione quasi-statica con una velocità di carico di 0,075 N/mm²/s.

Controllo tra piastre di acciaio piane e parallele, registrazione del 3° carico, con campo iniziale linearizzato ai sensi di ISO 844, controllo a temperatura ambiente.

Parametro: spessore del materassino isolante in Sylodyn®

Fattore forma q = 3

Modulo di elasticità

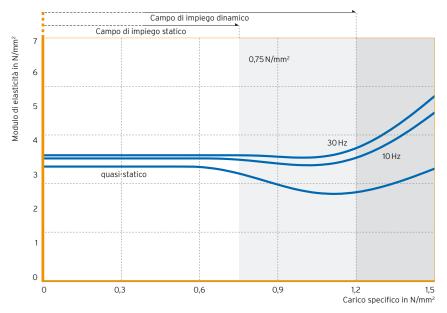


Fig. 2: Dipendenza dal carico del modulo statico e dinamico di elasticità

Modulo di elasticità quasi-statico come modulo tangente della curva di inflessione. Modulo dinamico di elasticità da sollecitazione sinusoidale con velocità delle vibrazioni di $100\,\mathrm{dBv}$ re. $5\cdot10^{-8}\,\mathrm{m/s}$ (corrispondente a un'ampiezza di vibrazione di $0,22\,\mathrm{mm}$ a $10\,\mathrm{Hz}$ e $0,08\,\mathrm{mm}$ a $30\,\mathrm{Hz}$).

Misurazione in base alle DIN 53513

Parametro: frequenza

Fattore forma q = 3

Frequenza naturale

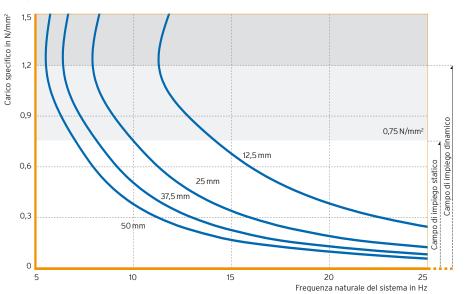


Fig. 3: Frequenze proprie per diversi spessori

Frequenze proprie di un sistema che genera vibrazioni con un grado di libertà costituito da una massa rigida e un materassino isolante elastico in Sylodyn® NE su fondo rigido.

Parametro: spessore del materassino isolante in Sylodyn®

Fattore forma q = 3

Isolamento alle vibrazioni

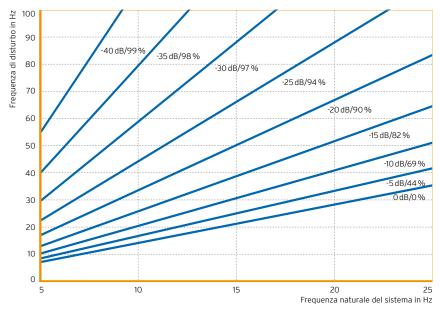


Fig. 4: Trasmissione e grado di isolamento

Riduzione della trasmissione delle vibrazioni meccaniche grazie all'installazione di un materassino isolante elastico in Sylodyn® NE su fondo rigido.

Parametro: trasmissione in dB, grado di isolamento in percentuale

Influenza del fattore forma

I diagrammi indicano le caratteristiche del materiale con diversi fattori forma.

Modifica dell'inflessione

150%

120%

90%

60%

30%

0%

-30%

-40%

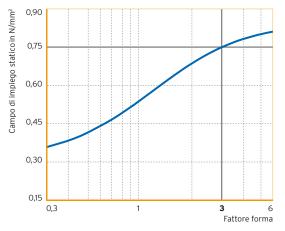


Fig. 5: Campo di impiego statico dipendente dal fattore forma

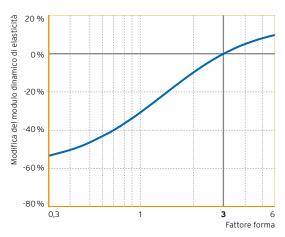


Fig. 7: Modulo dinamico di elasticità 4 a 10 Hz in base al fattore forma



Fig. 8: Frequenza propria 4 con spessore costante dipendente dal fattore forma

Le caratteristiche del materiale possono essere determinate mediante il programma di calcolo online FreqCalc. Il programma è accessibile al link www.getzner.com. È necessaria la registrazione.

Fattore forma

 $^{^4}$ Valori di riferimento: Carico specifico 0,75 N/mm², fattore forma q = 3